Лазерный пинцет позволил измерить силу взаимодействия белков

01 Июля 2008
Лазерный пинцет позволил измерить силу взаимодействия белков

Американские ученые измерили силу взаимодействия между двумя белками, используя молекулярный пинцет из пучков света. С помощью созданного ими инструмента они оттягивали два индивидуальных белка друг от друга. Свои результаты исследователи опубликовали в журнале Proceedings of the National Academy of Sciences.

В качестве объекта исследования Мэттью Лэнг (Matthew Lang) из Массачусетсткого технологического института и его коллеги выбрали актин-связывающие белки альфа-актинин и филамин. Актин - глобулярный мышечный белок, отдельные молекулы которого соединяются в длинные цепи. Две цепи переплетаются между собой, образуя спираль. Такая форма актина, получившее название F-актин, является важным компонентом клеточного скелета. Белки, связывающиеся с актином, могут обеспечивать передвижение компонентов внутри клетки или движение самой клетки.

Чтобы определить, с какой силой альфа-актинин и филамин связаны с актином, исследователи выбрали две нити актина, соединенные между собой актин-связывающими белками. Одну из нитей ученые закрепили на неподвижной подложке, а вторую присоединили к полимерной грануле, которую мог захватывать пинцет. С его помощью ученые тянули за свободную нить до тех пор, пока связь между актин-связывающим белком и актином не разрывалась. Измерив приложенное усилие, они определили силу связывания. Проведя несколько экспериментов, исследователи выяснили, что для разрыва связей между белками необходимо приложить силу от 40 до 80 пиконьютонов. Ньютон - сила, которая сообщает телу массой один килограмм ускорение, равное одному метру на секунду в квадрате. Один пиконьютон равен 10х-12 ньютонов.

Молекулярные пинцеты из лазерных лучей широко применяются в современных исследованиях. Их технологии постоянно совершенствуются. Так, в одном из последних номеров журнала Nature была опубликована статья, авторы которой доложили о создании светового пинцета, который позволяет добиться повышенной точности "захвата". До сих пор она была ограничена дифракционным пределом - минимально возможным размером светового пятна, которое можно получить, фокусируя электромагнитное излучение (свет) заданной длины волны в среде с определенным показателем преломления.

Источник:Лента.ру
Наверх